Replication Fork Reversal after Replication–Transcription Collision

نویسندگان

  • Anne L. De Septenville
  • Stéphane Duigou
  • Hasna Boubakri
  • Bénédicte Michel
چکیده

Replication fork arrest is a recognized source of genetic instability, and transcription is one of the most prominent causes of replication impediment. We analyze here the requirement for recombination proteins in Escherichia coli when replication-transcription head-on collisions are induced at a specific site by the inversion of a highly expressed ribosomal operon (rrn). RecBC is the only recombination protein required for cell viability under these conditions of increased replication-transcription collisions. In its absence, fork breakage occurs at the site of collision, and the resulting linear DNA is not repaired and is slowly degraded by the RecJ exonuclease. Lethal fork breakage is also observed in cells that lack RecA and RecD, i.e. when both homologous recombination and the potent exonuclease V activity of the RecBCD complex are inactivated, with a slow degradation of the resulting linear DNA by the combined action of the RecBC helicase and the RecJ exonuclease. The sizes of the major linear fragments indicate that DNA degradation is slowed down by the encounter with another rrn operon. The amount of linear DNA decreases nearly two-fold when the Holliday junction resolvase RuvABC is inactivated in recB, as well as in recA recD mutants, indicating that part of the linear DNA is formed by resolution of a Holliday junction. Our results suggest that replication fork reversal occurs after replication-transcription head-on collision, and we propose that it promotes the action of the accessory replicative helicases that dislodge the obstacle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex.

An in vitro system reconstituted from purified proteins has been used to examine what happens when the DNA replication apparatus of bacteriophage T4 collides with an Escherichia coli RNA polymerase ternary transcription complex that is poised to move in the direction opposite to that of the moving replication fork. In the absence of a DNA helicase, the replication fork stalls for many minutes a...

متن کامل

Transcription-dependent recombination and the role of fork collision in yeast rDNA.

It is speculated that the function of the replication fork barrier (RFB) site is to avoid collision between the 35S rDNA transcription machinery and the DNA replication fork, because the RFB site is located near the 3'-end of the gene and inhibits progression of the replication fork moving in the opposite direction to the transcription machinery. However, the collision has never been observed i...

متن کامل

Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase

In vivo studies suggest that replication forks are arrested due to encounters with head-on transcription complexes. Yet, the fate of the replisome and RNA polymerase (RNAP) following a head-on collision is unknown. Here, we find that the E. coli replisome stalls upon collision with a head-on transcription complex, but instead of collapsing, the replication fork remains highly stable and eventua...

متن کامل

Replication fork reversal occurs spontaneously after digestion but is constrained in supercoiled domains.

Replication fork reversal was investigated in undigested and linearized replication intermediates of bacterial DNA plasmids containing a stalled fork. Two-dimensional agarose gel electrophoresis, a branch migration and extrusion assay, electron microscopy, and DNA-psoralen cross-linking were used to show that extensive replication fork reversal and extrusion of the nascent-nascent duplex occurs...

متن کامل

End of the Beginning: Elongation and Termination Features of Alternative Modes of Chromosomal Replication Initiation in Bacteria

In bacterial cells, bidirectional replication of the circular chromosome is initiated from a single origin (oriC) and terminates in an antipodal terminus region such that movement of the pair of replication forks is largely codirectional with transcription. The terminus region is flanked by discrete Ter sequences that act as polar, or direction-dependent, arrest sites for fork progression. Alte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012